Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Circuit Boards

Developed by the Plating Processes Subcommittee (4-14) of the Fabrication Processes Committee (4-10) of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 SCOPE ... 1
 1.1 Scope .. 1
 1.2 Description .. 1
 1.2.1 Phosphorus/Boron Content 1
 1.3 Objective .. 1
 1.4 Performance Functions .. 2
 1.4.1 Solderability .. 2
 1.4.2 Contact Surface .. 2
 1.4.2.1 Membrane Switches 2
 1.4.2.2 Metallic Dome Contacts 2
 1.4.3 EMI Shielding ... 2
 1.4.4 Conductive (Replacement for Solder) and/or Anisotropic Adhesive Interface .. 2
 1.4.5 Connectors .. 2
 1.4.5.1 Press Fit .. 2
 1.4.5.2 Edge TAB ... 2
 1.4.6 aluminum Wire Bonding 2
2 APPLICABLE DOCUMENTS ... 2
 2.1 IPC ... 2
 2.2 ASTM International (ASTM) 2
 2.3 Defense Standardization Program 2
 2.4 Telcordia Technologies, Inc. 2
 2.5 International Organization for Standardization (ISO) 2
3 REQUIREMENTS ... 3
 3.1 Visual .. 3
 3.2 Finish Thickness ... 3
 3.2.1 Electroless Nickel Thickness 3
 3.2.2 Immersion Gold Thickness 3
 3.3 Porosity .. 3
 3.4 Adhesion .. 3
 3.5 Solderability ... 3
 3.6 Cleanliness ... 4
 3.7 Chemical Resistance .. 4
 3.8 High Frequency Signal Loss 4
4 QUALITY ASSURANCE PROVISIONS 4
 4.1 Qualification .. 4
 4.1.1 Sample Test Coupons 5
 4.2 Acceptance Tests ... 5
 4.3 Quality Conformance Testing 5
APPENDIX 1 Chemical Definitions 6
APPENDIX 2 Process Sequence 7
APPENDIX 3 Qualification of ENIG Process by the Board Supplier 8
APPENDIX 4 Recommendation for Thickness Measurement 9
APPENDIX 5 Standard Developments Efforts of Electroless Nickel Immersion Gold .. 10

Figures
Figure 3-1 Uniform Plating .. 3
Figure 3-2 Excessive Plating or Nickel Foot 3
Figure 3-3 Edge Pull Back ... 4
Figure 3-4 Skip Plating .. 4
Figure 4-1 IPC-2221 Test Specimen M, Surface Mount Solderability Testing, mm [in] .. 5
Figure 1 Results from Gold Thickness Survey 11
Figure 2 Results from Nickel Thickness Survey 12
Figure 3 Comparison of Gold Thickness Values by XRF Machine Type .. 14
Figure 4 Comparison of Gold Plating Thickness Variation by Vendor for Similar Bath Life Conditions .. 15
Figure 5 Comparison of Nickel Plating Thickness Variation by Vendor for Similar Bath Life Conditions 16
Figure 6 Wetting Times as a Function of Plating Dwell Times for Vendor D, 90 Days Old 17
Figure 7 Wetting Times as a Function of Plating Dwell Times for Vendor D, 90 Days Old 18
Figure 9 Wetting Balance Data for Vendor D Post 18 Hours 85/85 Conditioning 20
Figure 10 Comparison of One Micron Thick Gold Deposit Tested at 8 Months Shelf Life vs as Received and 85/85 21
Figure 11 Comparison of One Micron Thick Gold Deposit after Various Storage Times/Conditions .. 21
Figure 12 Contact Resistance Data for Vendor D for Interlocking Square Contacts 22
Figure 13 Contact Resistance Data for Vendor C for Interlocking Square Contacts 23
Figure 14 Comparison of Gold Thickness by Vendor for the Interlocking Square Contact Test 24
Figure 15 Interlocking Square Contact Test Coupon 25

Tables
Table 3-1 Requirements of Electroless Nickel Immersion Gold Plating .. 1
Table 4-1 Qualification Test Coupons 5

1 SCOPE

1.1 Scope This specification sets the requirements for the use of Electroless Nickel/Immersion Gold (ENIG) as a surface finish for printed circuit boards. This specification is intended to set requirements for ENIG deposit thicknesses based on performance criteria. It is intended for use by supplier, printed circuit manufacturer, electronics manufacturing services (EMS) and original equipment manufacturer (OEM).

1.2 Description ENIG is an electroless nickel layer capped with a thin layer of immersion gold. It is a multifunctional surface finish, applicable to soldering, aluminum wire bonding, press fit connections, and as a contact surface. The immersion gold protects the underlying nickel from oxidation/passivation over its intended life. However, this layer is not totally impervious and it will not pass the requirements of a ‘classic’ porosity test.

1.2.1 Phosphorus/Boron Content Phosphorus or boron containing reducing agents are used for the reduction of the electroless nickel during the deposition process. Phosphorus or boron is thus incorporated in the nickel deposit. The level of these co-deposited elements should be controlled within the specified process limit. Variation of phosphorus or boron level, outside the specified process limits, may have adverse effects on the solderability of the finish.

1.3 Objective This specification sets the requirements specific to ENIG as a surface finish (see Table 3-1 for a summary of these requirements). As other finishes require specifications, they will be addressed by the IPC Plating Processes Subcommittee as part of the IPC-4550 specification family. As this and other applicable specifications are under continuous review, the subcommittee will add appropriate amendments and make necessary revisions to these documents.

<table>
<thead>
<tr>
<th>Table 3-1</th>
<th>Requirements of Electroless Nickel Immersion Gold Plating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td>Test Method</td>
</tr>
<tr>
<td>General</td>
<td>Visual</td>
</tr>
<tr>
<td></td>
<td>Electroless Nickel Thickness</td>
</tr>
<tr>
<td></td>
<td>Immersion Gold Thickness</td>
</tr>
<tr>
<td></td>
<td>Porosity</td>
</tr>
<tr>
<td>Physical</td>
<td>Adhesion/Tape Test</td>
</tr>
<tr>
<td></td>
<td>Solderability</td>
</tr>
<tr>
<td>Chemical</td>
<td>Phosphorous/Boron Content</td>
</tr>
<tr>
<td></td>
<td>Chemical Resistance</td>
</tr>
<tr>
<td>Electrical</td>
<td>High Frequency Signal Loss (1)</td>
</tr>
<tr>
<td></td>
<td>Contact Resistance (1)</td>
</tr>
<tr>
<td>Environmental</td>
<td>Cleanliness</td>
</tr>
</tbody>
</table>

(1) An appropriate IPC-TM-650 test method used to generate data for this electrical property is not available at the time of this writing.